Maintenance of muscle mass is not dependent on the calcineurin-NFAT pathway.
نویسندگان
چکیده
In this study, the role of the calcineurin pathway in skeletal muscle atrophy and atrophy-reducing interventions was investigated in rat soleus muscles. Because calcineurin has been suggested to be involved in skeletal and cardiac muscle hypertrophy, we hypothesized that blocking calcineurin activity would eliminate beneficial effects of interventions that maintain muscle mass in the face of atrophy-inducing stimuli. Hindlimb suspension and spinal cord transection were used to induce atrophy, and intermittent reloading and exercise were used to reduce atrophy. Cyclosporin (CsA, 25 mg x kg(-1) x day(-1)) was administered to block calcineurin activity. Soleus muscles were studied 14 days after the onset of atrophy. CsA administration did not inhibit the beneficial effects of the two muscle-maintaining interventions, nor did it change muscle mass in control or atrophied muscles, suggesting that calcineurin does not play a role in regulating muscle size during atrophy. However, calcineurin abundance was increased in atrophied soleus muscles, and this was associated with nuclear localization of NFATc1 (a nuclear factor of activated T cells). Therefore, results suggest that calcineurin may be playing opposing roles during skeletal muscle atrophy and under muscle mass-maintaining conditions.
منابع مشابه
The calcineurin-NFAT pathway and muscle fiber-type gene expression.
To test for a role of the calcineurin-NFAT (nuclear factor of activated T cells) pathway in the regulation of fiber type-specific gene expression, slow and fast muscle-specific promoters were examined in C2C12 myotubes and in slow and fast muscle in the presence of calcineurin or NFAT2 expression plasmids. Overexpression of active calcineurin in myotubes induced both fast and slow muscle-specif...
متن کاملتاثیر یک دوره تمرین مقاومتی بر بیان اینترلوکین-6 و RCAN-1 در عضله اسکلتی موشهای صحرایی دیابتی شده با استروپتوزوسین
Background: Myokines released from skeletal muscle have multiple metabolic and hypertrophic effects. On the other hand, one of proposed pathways for effects of exercise training on metabolic diseases is calcineurin signaling pathway. With considering to relation between interleukin-6 (IL-6) and calcineurin, the purpose of this study was to investigate whether the resistance training has an effe...
متن کاملA calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells.
Myf5 is a member of the muscle regulatory factor family of transcription factors and plays an important role in the determination, development, and differentiation of skeletal muscle. However, factors that regulate the expression and activity of Myf5 itself are not well understood. Recently, a role for the calcium-dependent phosphatase calcineurin was suggested in three distinct pathways in ske...
متن کاملInhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes.
Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I (PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly ...
متن کاملChanges in Pre- and Post-Exercise Gene Expression among Patients with Chronic Kidney Disease and Kidney Transplant Recipients
INTRODUCTION Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD) is an inflammatory state. How CKD and, subsequently, kidney transplantation affects skeletal muscle gene expression after exercise are unknown. METHODS Study cohort: non-diabe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 282 6 شماره
صفحات -
تاریخ انتشار 2002